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This work considers nonlinear fluid—structure interaction for a vibrating pipe containing
fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating
unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping
and the stiffness of the pipe. The behavior of the system in response to lateral resonant
base excitation is analysed numerically and by the use of a perturbation method (multiple
scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective
for transferring energy from the shaker to the fluid, whereas higher modes of vibration can
be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the
nonlinear geometrical terms is analysed and these terms are shown to affect the response
for higher modes of vibration. Experimental investigations show good agreement with
theoretical predictions.
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1. INTRODUCTION

THIS WORK DEALS WITH FLUID FLOW in a vibrating pipe driven by nonlinear components of
the vibratory forces. A theoretical and experimental investigation of system response to
lateral resonant base excitation is carried out.

When a fluid-filled pipe performs transverse vibrations, transverse forces affect each
fluid element. Depending on the pipe slope, components of the forces act tangentially
to the pipe axis forcing the fluid element to move relative to the pipe. The bulk
movement of the fluid is determined by the total contribution of tangential forces on all
the fluid elements in the pipe. In the absence of external pressure forces, the axial
motion of the fluid is governed completely by the nonlinear vibratory forces. In
addition, the fluid motion induced nonlinearly affects the dynamic behavior of the pipe.
Thus, the effect to be studied is governed by nonlinear interaction.

Previous work has been done on nonlinear dynamic interaction between structures
and movable media in contact with the structure. Seemingly paradoxical behavior of
vibrating rods with point-masses free to slide has been described by Blekhman &
Malakhova (1986) and Chelomei (1983). Blekhman and Malakhova investigated
systems of rigid and flexible rods, carrying collars with holes slightly larger than those
of the rods. For certain conditions of excitation the rod could be stabilized in an
upright position with a collar fixed in “flying” position along the rod. Linear theory
predicts no coupling between collar- and rod-motion and the collar would be expected
to simply fall under the influence of gravity. Also, the above-mentioned phenomenon is
potentially applicable for passive vibration damping (Babitsky & Veprik 1993,
Thomsen 1996).

Bajaj er al. (1980) and Rousselet & Herrmann (1981) considered nonlinear
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fluid-structure interaction in fluid-conveying pipes. The fluid was affected by a large
upstream fluid pressure in addition to the weak nonlinear vibratory forces. Conse-
quently, the effect of the nonlinear interaction forces was to modify the fluid speed on a
small-scale level. Lee et al. (1995) investigated nonlinear interaction between lon-
gitudinal, transverse and radial vibrations of a pipe and the speed and pressure of
conveyed fluid. In a case study, they considered a pinned—pinned pipe conveying fluid
with prescribed speed.

Linear studies on structures traversed by moving point-masses have been studied by
Sadiku & Leipholz (1987), for example. The point-mass speed was externally
prescribed, and the effect of the moving mass on the structural behavior was analysed,
while nonlinear interaction was neglected. Pipes conveying fluid have also been the
subject of many investigations in the linear domain, [e.g. Benjamin (1961); Paidoussis
& Issid (1974)]. These studies consider externally prescribed fluid speed, neglecting
nonlinear interaction. For reviews of work on fluid-conveying pipes see, for example,
Paidoussis & Li (1993) or Semler et al. (1994).

Also related to this work are studies on conveyance of solid material in vibrating
rigid pipes or on plates. Long et al. (1994) investigated conveyance of a small solid
block in a spatially curved tube by means of vibration. Sliding, non-sliding and flying
motion of the block was considered. If careful attention was given to the excitation-
amplitude and -frequency, the block could be transported through the tube. The
motion of the rigid tube was prescribed and no attention was given to the influence of
the motion of the block on the vibration of the tube. Other work on vibrational
transportation of solid and granular material can be found in Blekhman (1994).

This paper is organized as follows. In Section 2 the model is presented and the
equations of motion are derived. Section 3 presents numerically obtained solutions to
the model equations. The results show that resonant pipe vibrations generally create
unidirectional fluid flow towards the pipe end. In Section 4 a perturbation analysis is
conducted (multiple scales). Results are presented for two specific examples: resonant
excitation of the first and fourth mode of vibration, respectively. The effect of key
parameters on system response is analysed, and so is the effect of the geometrical
nonlinearities. The geometrical nonlinearities are shown to affect the response for
higher modes of vibration. A comparison between the different modes of vibration with
respect to energy transfer efficiency is provided, showing the fundamental mode to be
most effective for transferring energy from the vibration exciter to the fluid. Section 5
describes experimental results for the first and second modes of vibration, showing
good agreement with theoretically predicted results.

2. MODEL EQUATIONS

Figure 1(a) shows the model. A flexible cantilever pipe is connected to a fluid-filled
reservoir, supplying fluid to the pipe. The fluid speed in the reservoir is vanishing, and
the fluid pressure is atmospheric.

% EL pA ,m
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Figure 1. (a) System model, and (b) the coordinate system used.
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The pipe is inextensible and uniform with length /, constant mass per length pA, and
flexural rigidity EI. The pipe performs in-plane transverse vibrations with small but
finite rotations in the fixed coordinate system (&, @), under the influence of lateral
periodic base excitation given by the time-dependent displacement f cos Qt. The pipe is
slender, so that Bernoulli-Euler beam theory can be applied and rotary inertia be
neglected. External dissipation is included in form of linear viscous damping.

The fluid is considered incompressible with mass per unit length m. The flow is
described by the time-dependent speed v(¢). The fluid speed is taken as a mean of the
cross-sectional speed profile and is measured positive towards the pipe end. The fluid
flow is affected by internal friction between the fluid and the pipe wall, characterized by
the pipe wall stress Tyqy-

Figure 1(b) shows the coordinate system. A pipe element is characterized by the
position vector ¥(s, t) = (x(s, t), y(s, t)), where x(s, t) and y(s, t) are the positions of the
element along each axis in the fixed coordinate system (&, %) respectively, and s is a
curvilinear coordinate s € [0, /]. The position of a fluid element relative to the pipe
inlet is given by the curvilinear coordinate u, defined so that #i = v. The inextensibility
condition provides the relation (x’)*+ (y’)* =1, where primes denote differentiation
with respect to s.

Hamilton’s principle is employed for setting up the equations of motion. The kinetic
and potential energy density of a combined pipe- and fluid-element is, respectively:
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where D/Dt=0/0dt +110/dt. Dots denote differentiation with respect to time .
The system Lagrangian £ and the Lagrangian density & are introduced as

££=J:(97—‘V)ds=£%ds. ©)

The variation of the action integral / = [? £ dt added to the virtual work done by the
non-conservative forces acting on the system vanishes (Semler et al., 1994),

(%)
51+f SW di = 0. (3)
n

The virtual work of nonconservative forces can be divided in two: 6W = 6W . +
O Whuia, 1-€. the work associated with a virtual displacement of the pipe, and the work

associated with a virtual displacement of the fluid. The two contributions are given as

or, or
SWripe = _mu<87t[ +u gl) - 8r, = —mui(y,8y, + x,8x,) — mu*(y[8y, + x,8x,), (4a)
m
0 Whuia = — Twan!Sauiaut + (Py— P)du. (4b)
Pfluid

The virtual work done on the pipe (4a) equals the product of the virtual tip
displacement and the fluid momentum. The virtual work on the fluid (4b) originates
from the work done by the pipe-wall friction and by the difference in fluid pressure
force between the pipe inlet and outlet, F, and P, respectively, for a virtual
displacement of a fluid element du. In (4b), Spuq and pguq denote the fluid tube
circumference and the fluid density, respectively. External viscous damping is added
later directly in modal form.
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The last term in (4a) is rewritten using the inextensibility condition. The pipe-wall
friction T,,; of (4b) is proportional to the fluid speed for laminar flow, (White 1991),
and to squared fluid speed for turbulent flow, (Bajaj et al. 1980). That is
Tyan = 4l [/ 71|, where a; is a pipe-wall friction coefficient, and j =1, 2 for laminar and
turbulent flow respectively. Assuming that the fluid discharges into atmospheric
pressure, the Bernoulli equation (White 1991), can be used to relate the flow conditions
at the pipe inlet to the conditions at the fluid reservoir. The fluid pressure difference
can then be written as Py — P, = — 3pguiqtt”. Equations (4a,b) become

1 1
SWyipe = —mui(y,8y, + %,8x,) — L mLZZ(y”(l +y ) —y" L y'y” ds>5y ds, (5a)

BLW;]uid = _Clleﬂu,‘dl;t |I/'li71| ou — %muzﬁu. (Sb)

The variation of the action intgeral is

Llg€ € RY3 9€ . 9% 0€ . 0€

ol = — Oy 8y + 8yt i+ —8x' + —du+_—obu|dsdt (6)
b Jo Ny ay ay 0x 0x ou ou

By using partial integration, eliminating x by using the inextensibility condition, and

requiring (3) to be fulfilled for arbitrary admissible variations in 8y and du one obtains

90€ 9 09¢ 9 0€ o (00E DA€
st ) Ty ()
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T/790€ 9 0% . !
+y"(1+3y"%) f (&ET +— ,> ds + mu2<y”(1 +y'%) — y”f y'y" ds> =0, (7a)
o X 0S0x o
190€ 3¢ A
Jo <a7£‘ @) ds = —5mit” = alSyiatt 11, (7b)

Equations (7a,b) are expanded, substituting @ =v. Small but finite pipe rotations
imply that (y’)? cannot be neglected compared to unity whereas (y’)* and higher order
terms can. This yields two coupled nondimensional equations governing the in-plane
transverse vibrations of the pipe and the speed of the fluid, respectively:

& ré 4
W+ W+ [wf f (W'2+w’w’)d§d§] +[w'w'w’] +2BUw' (1 +w'?)
1 J0

3
+ UPw"(1+w?) + BUM — E)w"(1+3w'?) + w"f QBUW'W' + Uw'w"
1
+1BUW?) dé = pQ* cos Q1, (8a)

d l j—1 1 _ ! PO 1.2 ¢ et .12
U+B(aj|U |+z0)U = Bfo [ww 1-3w )fo(ww +w )d§]d§
1

+ BpQ?*sin Qr f w' dé, (8b)

0

valid for 8#0. Dots and primes here denote differentiation with respect to 7 and ¢
respectively, and the nondimensional quantities are:

s y — f cos Qt f EI (pA + m)I* <
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The first and second term in (8a) represents linear and stiffness respectively and the
third and fourth term the nonlinear inertia and stiffness. The remaining terms on the
left-hand side represent the fluid effect on the pipe vibrations due to the Coriolis,
centrifugal and angle-acceleration forces. Equation (8a) is similar to equations
previously obtained [e.g., Semler et al. (1994)] except for the presence of the external
forcing term.

The left-hand side of the fluid equation (8b) contains the inertia and friction terms.
The right-hand side describes the vibratory forcing from the transverse pipe motion.
The equation agrees with those of Bajaj er al. (1980) and Rousselet & Herrmann
(1981), except that there is no upstream fluid pressure in (8b). Hence, in the system
considered fluid motion occurs only through coupling to the transverse pipe motion.

A mode-shape expansion is applied in order to recast equation (8a,b) into a set of
ordinary differential equations. Using the expansion w(¢, T) =21, q:(T)¢@:(€), where
¢@i(§) is the orthogonal set of cantilever mode shapes, and ¢;(7) are the generalized
coordinates, yields n ordinary differential equations for the pipe and a single ordinary
equation for the fluid:

G: +28w,q; + w%qz‘ +28U Z ki + 2 (szkU + gikUz)qk +2BU 2 KitimQ Q19 m
k=1 k=1

k,L,Lm=1

+ 2 (Aiim + 3BFsinU + G UNG@iG + 2, XikimG@i (@i + Qi)

k,lLm=1 k,lm=1

=p®,Q*cos Qr, fori=1,...,n, (10a)

. 1 . n n
U+E(aj|Uf’1|+%U)U:—B > kwqidi— B Y hiqeds + 4uds)
k, =1

k,l=1

- %B Z Hklmquql(CImqp + qmqtl) (10b)

k,Lm,p=1

In equation (10a) modal viscous damping, characterized by the modal damping ratio
¢;, has been added. In (10b) the explicit dependence on the base excitation has been
neglected, since the base displacement amplitude is assumed to be much smaller than
the pipe deflection (p <« ¢q). The constants: w;, V;, kix, &> x> Aicim> Firims Girims Xikim
and Hy,,, are computed from the expansion functions (see Appendix).

If the forcing frequency Q is near a natural frequency w;, then a single cantilever
mode shape will be dominant and a single-mode approximation (n# = 1) can be applied.
Since the near-resonant case yields the largest pipe motion and thus the strongest
vibratory forcing of the fluid, this case is of interest and will be considered in the
following.

3. NUMERICAL ANALYSIS OF SYSTEM BEHAVIOR

In this section time-series are shown depicting the basic fluid and pipe motion. As
examples, results are given for the first and fourth modes of vibration for excitation in
sharp resonance, i.e. Q= w;, i =1, 4. The results are based on numerical integration
(fifth- and sixth-order runge-Kutta-Verner) of the single-mode approximation of
equations (10a,b), written as a system of three first order equations.
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Figure 2. Numerical simulation of system behavior for the first and the fourth modes of vibration: (a,c)
fluid speed U, and (b,d) pipe end deflection 2¢;; (a,b) Q = w,, p =0-003; (c,d) Q = w,, p = 0-00015; &, = 0-8;
in all cases, j =2, a, =0-8, B>=0-2, { =0-01.
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Figure 2(a,c) depicts the fluid speed as a function of time for the first and fourth
mode of vibration, respectively. A positive mean fluid speed appears, indicating flow in
the direction towards the pipe end. Small oscillations are seen to overlay the mean
speed. The amplitude and frequency of the oscillations increase with the mode number,
but the amplitude is always small compared to the mean speed. Figure 2(b,d) shows the
corresponding deflections of the pipe end. The vibrations are seen to be regular
periodic, with maximum tip deflection around 9% of the pipe length for vibrations in
the first mode and around 0-3% for the fourth mode. The significant difference in
vibration amplitude is seen even though the corresponding values of the mean fluid
speed are comparable.

It should be emphasized that even though the mean fluid speed, when exciting the
fourth mode of vibration with very little amplitude of excitation, is comparable to the
mean fluid speed with first mode excitation at considerable higher magnitudes, this is
not a good base of comparison between the two modes of vibration. As will appear
later, from Section 4.3, the fourth-mode excitation represents a higher power
consumption, due to the difference in natural frequencies between the two modes.

According to the model, mean flow is shown to be induced in the pipe, when the
pipe vibrates. Similar qualitative behavior as in Figure 2 is seen for a wide range of
parameters in the case of near-resonant forcing. It can be shown also that all modes of
vibration create the displayed effect. The shown effect is purely nonlinear and is to be
analysed in further detail in the following sections.

4. PERTURBATION ANALYSIS OF RESONANT MOTION

A perturbation analysis of the model equations is performed in order to obtain more
insight into the behavior of the system, and to analyse the effect of variation of the
system parameters. A multiple scales method [e.g., Nayfeh & Mook (1979)] is
employed for obtaining results for the near-resonant case. Only positive values of the
fluid speed are considered, i.e. |U/ | = U/
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To perform the analysis, two different time-scales are introduced. A fast time-scale
Ty comparable with natural- and excitation-frequencies, and a slow time-scale 7} = €7
describing the slow modulation of the pipe-amplitude and -phase and of the mean fluid
speed. The small parameter ¢ is introduced in order to indicate small terms.

Analysing the system response in the near resonant case, a single-mode approxima-
tion of equations (10a,b) is applied:

i + 0iq; + 2e(Gw; + Bk U)d; + E(Bqu +8:U)q; + e(Ayi + 3BFU + G Uq?
+2eBUK g7 G; + eXunqi(q:dd; + G7) = ep 9,227 cos Qt,  (11a)

U+ % (%‘Uji] + %U)U = —¢eBkyq;d; — eB(h; + ]iHiiii %)(%‘71‘ + Cllz) (11b)

In (11a) and (11b), nonlinear terms, damping terms and forcing terms have been
considered to be of order € compared to inertia terms, respectively. In the following,
indices indicating the mode number are omitted for brevity.

A zero-order approximation to equations (11) is sought. To obtain this, a first-order
expansion is introduced,

q =qo(To, T) + eq:(Ty, Th), U=Uy(Ty, T)) + eU(Ty, Tr). (12a,b)

Inserting (12a,b) into (11a,b) and equating coefficients of the same powers in ¢, yields
to order &

Digo+ 0?qo =0, D, U, = 0; (13a,b)
and to order &'
Dig, + w’q = —2DyD1qo — 2({w + BkUy)Dogo — (BfDo Uy + gUd)q0
— (A +3BFDyUy + GUg)qi — 2BKUsq5Doqo — Xqo(qoD5qo + (Doqo)?) + p92* cos O,
(14a)
1 .
DyU,=—-D,U, - E (o, Uy + 3Uo) Uy — BkqoDigo — B(h + 3Hq)(q0D3go + (Doqo)),

(14b)
where D= d'/9T"
The solutions to (13a,b) are
qo=Be" + Beh, Uy=A, (15a,b)

where A and B are real and complex functions of 7;, respectively. A bar denotes the
complex conjugate.

The unknown functions A and B are to be determined. Substituting (15a,b) into the
¢'-order equations (14a,b), yields

D(Z)Ch + (Uzch = _(Zin/ + le(é’w + BkA)B + gAZB)eian
-(BA+ 3GA? + 2iwBKA — zsz)BZEeinﬂ
— (A+ GA® +2iwBKA — 2w2X)B3e3i‘°T“ +1p9 Q%+ cc, (16a)

1 . _
DU, = —3A’ — 2% (A7 +3A)A + Bw*(k + HBB)BB

+ Bw?(k +2h + 2HBB)B?*¢* " + Bw?HB*e* " + cc, (16b)

where ( )’ = 9/07;, and cc denotes the complex conjugates of the preceding terms.
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Terms proportional to €’ and terms independent of T; yield secular terms in the
solution to (16a) and (16b), respectively. The case of Q = w yields a near-resonant term
in (16a), which will produce a small divisor term in the solution. These terms are
required to vanish.

The nearness of the excitation frequency to the natural frequencies can be expressed
as

Q=w+eco Q)=o)+ T, 17)

where o is a so-called detuning parameter. Inserting (17) into (16a,b) and eliminating
the resonant and near resonant terms in (16a) and constant terms in (16b) yields, upon
separating real and imaginary part for the pipe equation,

wb' = —w({w + BkA)b — LBwKAb® + LpdQsin y, (18a)
by’ = (o — 1gA%)b — J(A + GA — Zwx)b’ + IpdQ? cos i, (18b)
BA' = —(a, A" +3A)A + 120 (k + SHD)D?, (18¢c)

where the polar notation B = 3be'“"i"") b and ¢ being real functions of T;, has been
introduced.

Equations (18a—c) constitute the so-called modulation equations, i.e. they govern the
slow time-scale modulation of the pipe-amplitude and -phase, b and ¢, and of the mean
fluid speed, A.

4.1. FIrRST VIBRATION MODE, LINEAR GEOMETRY

The system is considered for i =1, i.e. the forcing frequency is chosen near the
fundamental natural frequency (Q = w,), so that the fundamental mode of vibration is
dominant.

The stationary behavior of the system is obtained by setting b’ =y’ =A"=0 in
(18a,c). For low-to-moderate amplitude of forcing (p =<0-2), the effect of the higher
order geometrical nonlinearities is inessential. Neglecting these higher-order terms, the
stationary solution for the modal pipe amplitude b, and the mean fluid speed A
become

p° R =[0i({o + Bk A + (381147 — 01(Q — 01))*]b3, (19a)
(A" +3A)A = S BPwiki b1 (19b)

Equation (19b) is used to eliminate A from (19a). Equation (19a) is then solved for
b, using a Newton-Raphson method. The stability of the solutions is determined by
computing the eigenvalues of the Jacobian of (18a,b), evaluated at the solution points.

Figure 3 shows frequency response curves depicting the mean fluid speed A and the
tip amplitude 2b, versus the relative forcing frequency Qw,. The perturbation solution,
based on (19a,b), is compared to results obtained by numerical integration of (11a,b)
without the geometrical nonlinearities. The tip amplitude is also compared to the linear
case with the fluid fixed inside the pipe, corresponding to setting A =0 in (19a).

As appears from Figure 3(b), significant motion of the pipe is confined to a
frequency band near the linear resonance frequency Q= w,. This is reflected in the
fluid behavior, shown in Figure 3(a) in that, outside the resonant region, the vibrations
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Figure 3. (a) Mean fluid speed A and (b) tip amplitude 2b, for the fundamental mode of vibration (i = 1),
versus relative forcing frequency Q/w, for p =0-01: ——, stable solutions; O, numerical integration; j =2,
a =08, B>=0-2, {, =0-01.

of the pipe are too small to induce significant fluid motion. The nonlinear coupling to
the fluid damps the vibrations of the pipe in the resonant region, as appears from
Figure 3(b). Compared to the case where the fluid is fixed inside the pipe, the
amplitude of the pipe vibrations is reduced significantly, due to large energy transfer to
the fluid (see also Section 4.3). The fluid flow also slightly increases the stiffness of the
pipe. This appears as a slight bending to the right of the response curves (hardly
noticeable in the figure). For other modes of vibration, the fluid flow has a softening
effect, bending response curves to the left. In all cases this effect is small compared to
the effect of damping. From comparison with numerical results it appears that the
perturbation solution adequately describes the qualitative behavior of the system.

Figure 4 shows the effect of four key system parameters on the mean fluid speed A:
forcing amplitude p, mass ratio 87, turbulent wall friction coefficient a, and modal
viscous damping ratio ¢;. The response is shown in a forcing frequency domain near
the linear resonance frequency Q = w;.

Figure 4(a,b) shows the effect of the amplitude of base excitation and the amount of
viscous damping. The values of these parameters directly influence the amplitude of the
pipe vibrations, but only indirectly influence the fluid speed. Increasing p or decreasing
£, results in larger amplitude of vibrations, which increases the fluid speed. If the
viscous damping is increased, the response curves are also seen to flatten.

Figure 4(c,d) depicts the effect of the relative fluid mass and the turbulent
wall-friction coefficient. Both parameters directly influence the mean fluid speed.
Increasing «a, restricts fluid flow and decreasing 8> decreases the magnitude of the
nonlinear pipe—fluid coupling. In both cases the mean fluid speed is decreased.
Decreased mean speed lowers the fluid damping on the pipe vibrations, and lower mass
ratio will also directly reduce the fluid effect on the pipe motion. Consequently, the
amplitude of pipe vibrations will grow. This will affect the fluid, but this secondary
effect is small compared to the direct influence.

Two limit curves are shown. The case of B*=1 in Figure 4(c) represents the
maximum nonlinear coupling, i.e. a dense fluid in a thin-walled pipe of light material.
Maximum nonlinear coupling maximizes A, i.e. the nondimensional mean fluid speed.
Large nonlinear coupling also maximizes the damping of the pipe vibrations, resulting
in a smooth response curve. The limit case of a, =0 in Figure 4(d) maximizes the mean
fluid speed, since the fluid then flows freely through the pipe. The flow is, however,
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Figure 4. Mean fluid speed A versus relative forcing frequency Q/w,, showing (a) effect of forcing
amplitude p, (b) effect of mass ratio 82, (c) effect of turbulent coefficient a, and (d) effect of external viscous
modal damping coefficient {,; parameter values are (unless explicitly stated): p =0-01, a,=0-8, 8% =02,

£, =0-01.

still restricted, due to the stationary fluid in the upstream fluid reservoir which has to
be accelerated.

4.2. FOURTH VIBRATION MODE, NONLINEAR GEOMETRY

The forcing frequency is now assumed to be near the fourth natural frequency (i =4,
Q= w,), so that the fourth mode of vibration is dominant. The third-order geometrical
nonlinearities will qualitatively affect the system response even for low-amplitude
excitation of the base. Including these higher-order geometrical nonlinearities, the
stationary solution to (18a,c) can be found to be

%pzﬁigzt = [[(%g44A2 — w0 (Q—wy)) + %(A4444 + G4444A2 - %wzzt)(4444)b421]2
+ [w4({4w4 + Bk A) + }—;,Bw4K4444Abﬁ]2]bi, (203)
(C“/'Aj_1 + %A)A = %Bzwi(km + }TH4444b12¢)b421~ (20b)

Figure 5 shows frequency response curves depicting the mean fluid speed A and the
tip amplitude 2b, versus the relative forcing frequency Qw,. The perturbation
solution, based on (20a,b), is compared to results obtained by numerical integration of



NONLINEAR FLUID TRANSPORT 337

0.26 0.012 ) -
Linear geometry Fluid fixe d Linear geometry
< hsr b
k=) N
g B
& E
: :
o @
g 2
= IS
0.00 : : : 0.000 : : :
0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10
Relative forcing frequency, Q/w, Relative forcing frequency, Q/w,

Figure 5. (a) Mean fluid speed A and (b) pipe end amplitude 2b, for the fourth vibration mode (i =4),
versus relative forcing frequency Q/w, for p =0-0007: ——, - - -, stable, unstable solutions; O, numerical
integration: j =2, a,=0-8, 8Z=0-2, ,=0-01

a single mode approximation of (11a,b). The tip amplitude is also compared to the case
of a fixed fluid, corresponding to letting A =0 in (20a), and to the case where the
higher order geometrical nonlinearities are neglected in (20a,b).

Figure 5(b) indicates how the nonlinear geometrical terms affect the system
response. A left-bending of the frequency response curve appears. This effect is due to
nonlinear inertia which has a softening effect. Nonlinear inertia is the dominant
third-order geometrical nonlinearity for second and higher modes of vibration. For the
fundamental mode, nonlinear curvature is dominant, pulling the response curves
slightly to the right. This effect is, however, negligible as mentioned in Section 4.1.
Figure 5(b) shows that the damping effect of the fluid on the vibrations of the pipe is
much less prominent compared to vibrations in the first mode, due to less transfer of
energy to the fluid. The response curve is seen to match the case of a fixed fluid nearly
if the relative frequency of forcing Q/w, is increased slowly (the response jumps to the
upper stable solution branch at Q= 0-975). If, however, Q/w, is decreased slowly past
the resonance region the response is “‘topped off”” due to the nonlinear coupling to the
fluid. At the linear resonance frequency, the pipe amplitude nearly matches the
response with the fluid being fixed.

Figure 5(a) shows response curves for the mean fluid speed A. The left bending of
the response curve reduces A by approximately 25% at the linear resonance frequency,
compared to the case where the third-order geometrical nonlinearities are neglected.
The maximum attainable fluid speed is, however, almost unchanged, but depends on if
the forcing frequency is increased or decreased through the resonant region.

Figure 6 displays the effect of four key system parameters on the mean fluid speed A:
forcing amplitude p, mass ratio 87, turbulent wall friction coefficient a, and modal
viscous damping .

Figure 6(a,b) shows the effect of p and ¢,. Changing the amplitude of forcing and the
amount of modal viscous damping affects the amplitude of vibrations directly. Larger
forcing and weaker damping increase the amplitude, causing the geometrical non-
linearities to come into effect. This is directly reflected in the fluid response curves,
bending them to the left. The amount of viscous damping is critical, as appears from
Figure 6(b). If the damping ratio exceeds about 5%, the resonant top vanishes with low
mean fluid speed as a result.
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Figure 6. Mean fluid speed A versus relative forcing frequency Q/w,, showing (a) effect of forcing
amplitude p, (b) effect of mass ratio 82, (c) effect of turbulent friction coefficient «, and (d) effect of external
viscous modal damping coefficient {,; , -+ Stable, unstable solutions; parameter values (unless

explicicly stated in the figures): p = 0-0007, j =2, a, =0-8, B> =0-2, £, =0-01.

Figure 6(c,d) shows the effect of the mass ratio 8 and the turbulent wall friction a,.
Changing these parameters affects the fluid speed directly. Increasing the amount of
wall friction increases the resistance on the fluid flow; similarly, decreasing the mass
ratio decreases the nonlinear pipe—fluid coupling. The secondary effect on the fluid,
mentioned in Section 4.1, is noticeable here. With decreased mean fluid speed, the fluid
damping of the pipe vibrations is decreased, which causes the geometrical non-
linearities to come into effect. This is reflected in the fluid response curves, causing
bending to the left.

4.3. ENERGY TRANSFER CONSIDERATIONS

In this section the energy transfer mechanism in the system is analysed. By means of
nonlinear interaction, energy is transferred from the vibration exciter to the fluid,
resulting in nonzero mean fluid speed and damped pipe vibrations. An account for this
mechanism is made from the numerical solution of the single-mode approximation of
equations (10a,b), with the higher order geometrical nonlinearities neglected. If both
sides of equation (10a) are multiplied with the modal pipe velocity ¢, the equation then
expresses a dimensionless power balance for the system. The left-hand side of the
equation expresses the kinetic and elastic power in the pipe, as well as the dissipated
power and the kinetic power in the fluid. The right-hand side is a measure of the
instantaneous power supplied by the shaker. If both sides of the equation are
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Figure 7. Efficiency factor n versus supplied power Eg, .../ T, (a) for { =0- 01 and (b) for ¢, =0-05, for
the four lowest modes of vibration; Q = w;, j =2, a, =0-8, B>=0-2

integrated over a single forcing period 7 =27/Q, a dimensionless energy balance is
obtained. The kinetic and elastic energies of the pipe vanish when integrated over a
forcing period. Consequently, the energy supplied is either dissipated or transformed
into kinetic energy of the fluid.

An efficiency factor for the shaker/fluid energy transfer mechanism, n, is then
defined as follows:

27mQ
f G1(2Bk;Uq; + Bf:Uq; + gii Uzqz') dr
Equia 0

n= E = 21Q ’ (21)
shaker . )
J q;p9,Q° cos Qr dt

0

where Eg ... and Eg,q are nondimensional measures of the supplied energy from the
shaker and the kinetic energy of the fluid, respectively. Using (21) with (10a,b), the
efficiency factor can be computed for different modes of vibration and parameters.

Figure 7 shows the efficiency factor n for the four lowest modes of vibration as a
function of the nondimensional power Eg..../T, supplied by the shaker, for two
different values of the modal damping ratio {;. The modal damping ratio is in both
cases assumed to be identical for the four modes considered.

It appears that the fundamental mode of vibration is the most effective for
transferring energy from the shaker to the fluid. It is noted also that n drops
significantly for higher modes of vibration. The efficiency factor is seen to increase for
higher power input, but the increase drops off quickly with increased power. For all
modes of vibration the efficiency factor depends strongly on the amount of viscous
damping present in the system. Comparing Figure 7(a) and 7(b), larger damping is seen
to cause less efficient transport of fluid, due to a larger dissipation of energy.

5. EXPERIMENTAL INVESTIGATION

Experiments were carried out for horizontal acrylic pipes subjected to resonant
excitation. Two different pipes were used to investigate fluid motion in response to
first- and second-mode vibrations. The experiments are set to cover both laminar and
turbulent flow for both modes considered.
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Figure 8. (a) Experimental set-up and (b) schematic of the set-up.

5.1. EXPERIMENTAL SET-UP

Figure 8 shows the experimental set-up. The pipe is mounted on a shaker with a steel
socket, and acrylic fittings are used to tighten the pipe. Water is allowed to flow in the
pipe from a reservoir, through a short silicone rubber tube. The reservoir is placed on
weighting scales, enabling the mass of the reservoir to be determined. A power
amplifier feeds the shaker. The frequency and magnitude of the harmonic base
displacement can be adjusted on the frequency generator connected to the power
amplifier. The acceleration of the base is measured by an accelerometer mounted on
the moving part of the shaker. The signal from the accelerometer is led through a
charge amplifier to the signal analyser.

In order to be able to perform the experiments, the pipes have to be inclined slightly.
Otherwise fluid will inevitably discharge from the pipe, even for a nonvibrating pipe.
The inclination causes gravity forces to come into effect and restrict the fluid flow. This
is counteracted in the experiments by increasing the water level in the reservoir so it
matches the level of the pipe end.

The experimental procedure was as follows. The reservoir is filled so that the pipe is
completely full of water. The natural frequency of the filled pipe is determined by
slowly sweeping the excitation frequency and noting the frequency for maximum tip
deflection. After refilling the reservoir, the mass of the reservoir is noted. The pipe is
then forced with a frequency matching the natural frequency, and current power is
adjusted to match the desired amplitude of forcing. After a forcing period of 20-120s,
depending on the actual fluid speed, the mass of the reservoir is noted again, so the
amount of discharged fluid can be computed.

5.2. MATERIAL DATA

Table 1 lists the data of the two pipes and water.

Young’s modulus E is found by measuring the damped natural frequencies for the
empty pipes and correcting for damping. A common mean value for the two pipes has
been chosen. The friction coefficients @, a, are determined by measuring the volume
flow in a nonvibrating pipe. The volume flow is created by applying a constant
gauge-pressure in the reservoir. Adding this constant pressure term to the right-hand
side of equation (8b), and with vanishing vibratory forcing, the equation can be solved
for «;, i =1, 2. The viscous damping coefficient { has been computed by measuring the
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TaABLE 1

Material data for the two pipes
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Pipe 1 2
Length, / (m) 0-40 0-60
Inner diameter, D; (m) 470 X107 4-80 X107
Outer diameter, D, (m) 7-10x 1077 7-25%x107°
Young’s modulus, £ (N/m?) 2:15x10° 215 % 10°
Pipe density, pyipe (kg/m?) 124 X 10° 124 X 10°
Fluid density, pguq (kg/m?) 998 998
Mass ratio, 8> 0-39 0-39
Laminar friction coefficient, «; 0-10 0-22
Turbulent friction coefficient, a, 2:6 39
Viscous damping coefficient, ¢; 0-04 0-03

vibration amplitude for resonant vibrations of an empty pipe, and using standard
results for a linear oscillator.

5.3. EXPERIMENTAL RESULTS

Experimental results for the two pipes are shown and compared with theoretical
results. The theoretical results are based on the perturbation solution in equations
(19a,b), i.e. the model with linear geometry. For the given parameter values the
third-order geometrical nonlinearities have no influence on the response. The volume
flow, V, is chosen as base of comparison between the analytical and the experimental
results.

Figure 9 shows theoretical and experimental values for V, versus the excitation
amplitude p for pipes 1 and 2. The volume flow is measured in milliliters per second
[ml/s].

A laminar and a turbulent theoretical curve is shown for both pipes. The Reynolds
number at the crossing of the two curves are computed to 2250-2300 for both pipes.
This matches the theoretical values for pipe flow: 2000-2300, (White 1991). Thus the
experimentally determined values for external damping and pipe-wall friction can be
expected to be adequately accurate.

225 - 18 (5 -

Volume flow, V (ml/s)

\ \
0 0.005 0.010

Forcing amplitude, p

0.015 0 0.0005 0.0010 0.0015 0.0020 0.0025

Forcing amplitude, p

Figure 9. Experimental and theoretical values for the volume flow V (ml/s) versus the forcing amplitude p
for the two lowest modes of vibration: ——, perturbation solution; [J, experimental data; a) pipe 1, Q = w,,
a; =01, a, =26, {; =0-04, B> =0-39; (b) pipe 2, Q= w,, @; =022, a, =39, {, =0-03, B =0-39.
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The results for both pipes show good agreement between predicted and measured
volume flow. Maximum deviation is about 15%, but the bulk of the experimental
points is seen to lie near the theoretical curves. Experimental results also seem to
indicate the predicted shift from laminar flow (j =1) to turbulent flow (j =2), in that
the location of the experimental points drops off to match the lower slope of the
turbulent curves for higher values of p.

6. SUMMARY AND CONCLUSIONS

Vibration-induced fluid flow caused by nonlinear fluid-structure interaction has been
investigated.

Equations of motion governing the transverse vibrations of a cantilever pipe and the
speed of an internal incompressible fluid were derived. The two equations are coupled
through nonlinear terms. The pipe vibrations affect the fluid through nonlinear forcing,
and the induced fluid flow affects the vibrations of the pipe by modifying the damping
and stiffness.

Numerical studies showed that the vibrations of the pipe cause the fluid to have a
mean speed component towards the pipe end, in addition to a small oscillating
component. Resonant excitation of all cantilever vibration modes can be used to obtain
this effect. It was noticed that the magnitude of pipe vibrations necessary to obtain a
given mean fluid speed is significantly lower for high modes.

A perturbation analysis was performed using a multiple-scales method. Frequency
response curves were obtained for near-resonant excitation. Noticeable fluid motion
occurs for near-resonant excitation only, where the nonlinear vibratory forcing is
sufficiently large. The fluid damps the vibration amplitude in the resonant region. Two
specific examples were considered: resonant excitation of the first and fourth modes of
vibration. The results showed qualitative similarities. The response for the fourth mode
of vibration is, however, affected by nonlinear pipe geometry, whereas for the
fundamental mode this effect is negligible. The fluid damping effect on the pipe
vibrations was seen to be largest for the fundamental mode, due to larger transfer of
energy to the fluid.

The energy transfer mechanism in the system was analysed. It was shown that the
efficiency factor, i.e. the kinetic energy of the fluid compared to the supplied energy by
the vibration exciter, decreases with higher modes of vibration. The amount of viscous
damping affects the efficiency of the system strongly, in that large dissipation decreases
the energy transferred from the exciter to the fluid.

Experimental investigations were performed for resonant excitation of the first and
second modes of vibration. The results showed good qualitative agreement with
theoretical results for both laminar and turbulent flow.

This work has illustrated and quantified a phenomenon associated with nonlinear
fluid-structure interaction. The nonlinear coupling explains transport of fluid through
flexible cantilever pipes, as seen in experiments. Linear theory predicts no coupling
between pipe- and fluid-motion and consequently no transport of fluid.

The phenomenon described, poses an alternative to previously suggested vibration
conveyors, in that it relies on resonant excitation of an elastic structure. When resonant
forcing is applied, fluid transport was shown to be possible for a wide range of system
parameters. The efficiency associated with the fluid transport was shown to be rather
low for realistic damping. There could, however, be other advantages using this device
as a means of transporting/pumping. The mechanism is extremely simple with no
internal moving parts. The device is therefore thought to be suitable for micro
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purposes, e.g. applications in medicine. Advantages are also possible when dealing with
toxic or aggressive fluids, which should not come into contact with moving parts.

Other means of excitation might also be used, e.g. parametric or transient excitation.
Further work is required in these areas to understand this mechanism of transport fully.
Also high-frequency excitation may introduce effects not included in the present
model.
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APPENDIX

The cantilever mode-shapes are given as:

cosh A; + cos A;
sinh A; +sin A;

(&) = (sin A;€ — sinh A;§) + (cosh A€ — cos A;€), (A1)

where the A =w;, i=1,...,n, are determined from the transcendental equations
cosA;cosh A; +1=0.
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The first- and second- and fourth-order constants are defined as
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